Evaluating the Power of GPU Acceleration for IDW Interpolation Algorithm
نویسندگان
چکیده
منابع مشابه
Evaluating the Power of GPU Acceleration for IDW Interpolation Algorithm
We first present two GPU implementations of the standard Inverse Distance Weighting (IDW) interpolation algorithm, the tiled version that takes advantage of shared memory and the CDP version that is implemented using CUDA Dynamic Parallelism (CDP). Then we evaluate the power of GPU acceleration for IDW interpolation algorithm by comparing the performance of CPU implementation with three GPU imp...
متن کاملImproving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search
This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptivel...
متن کاملImpact of data layouts on the efficiency of GPU-accelerated IDW interpolation
This paper focuses on evaluating the impact of different data layouts on the computational efficiency of GPU-accelerated Inverse Distance Weighting (IDW) interpolation algorithm. First we redesign and improve our previous GPU implementation that was performed by exploiting the feature of CUDA dynamic parallelism (CDP). Then we implement three versions of GPU implementations, i.e., the naive ver...
متن کاملGPU Acceleration of the Generalized Interpolation Material Point Method
This paper describes our experience rewriting a sequential particle-in-cell code so that its key computations are executed on a GPU. This code is well-suited to GPU acceleration, as it performs data-parallel operations on a regular grid. Key performance challenges are the need for global synchronization in mapping particles to grid nodes, and managing memory bandwidth to global memory. Performa...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2014
ISSN: 2356-6140,1537-744X
DOI: 10.1155/2014/171574